Dyes are common contaminants, some of which are teratogenic, carcinogenic, and causative of ecological damage, and dye wastewater often contains toxic sulfides. Biochar has been widely used for the adsorption and catalysis degradation of pollutants, including dyes and sulfides, due to its abundant surface functional groups and large specific surface area. Therefore, the simultaneous treatment of dyes and sulfides with biochar may be a feasible, effective, and novel solution. This study sought to utilize low-cost, environmentally friendly, and widely sourced biochar materials from agricultural wastes such as corn stalk, rice chaff, and bean stalk to promote the reduction of dyes by sulfides. Through the action of different biochars, sulfides can rapidly decompose and transform oxidizing dyes. The RCB800 (rice chaff biochar material prepared at 800 °C) was observed to have the best effect, with a degradation rate of 96.6% in 40 min and 100% in 50 min for methyl orange. This series of materials are highly adaptable to temperature and pH, and the concentration of sulfides has a significant effect on degradation rates. Compared with commercial carbon materials, biochars are similar in terms of their catalytic mechanism and are more economical. Scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption characterization results indicated that biochar contains more pores, including mesopores, and a sufficient specific surface area, both of which are conducive to the combination of sulfides and dyes with biochar. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed that there are oxygen-containing functional groups (examples include quinones and carboxyl groups) on the surface of biochar that promote the reaction of sulfide and dye. The formation of active polysulfides also potentially plays an important role in the degradation reaction. This article outlines a new method for improving the degradation efficiency of azo dyes and sulfides via biochar materials derived from widely sourced agricultural wastes.
Read full abstract