Abstract

High-performance adsorbents derived from wastes are of paramount significance for environmental remediation and value-added utilization. Herein, a novel porous carbon (i.e. electrolytic carbon, EC), prepared from greenhouse gas (CO2) by electrochemical reduction in molten carbonate, was investigated as an efficient adsorbent to remove tetracycline (TC) from water. The EC possessed oxygen-containing functional groups, large specific surface area (1064.8 m2 g−1), high pore volume (1.87 cm3 g−1), and rich mesopore, availing the removal of bulky TC. A rapid adsorption equilibrium (within 1 h) and a high removal efficiency (98.7%) were obtained. Moreover, the adsorption was an exothermic reaction and the whole process obeyed the pseudo-second-order kinetic and Langmuir models, gaining a saturated adsorption capacity of 393.5 mg g−1 at 25 °C, which was superior to various reported biochar and commercial carbon materials. Besides, the adsorption of EC exhibited a wide pH adaptability ranged from 2 to 9, and excellent recyclability. A π-π interaction was identified as the predominant mechanism by investigating the adsorption performance of EC and IR, XPS characterizations. These results highlight significant implication for the future application of CO2-derived carbon adsorbents in the treatment of antibiotic wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.