The assessment of microplastic (MP) pollution in urban areas is essential considering its abundance in freshwater, particularly due to urban wet weather discharge. The precise sources of MPs must be identified to better understand its characteristics. This study examines the relationship between MP pollution in detention basin sediments and land use in the investigated catchments. The study of stormwater management infrastructure, mainly in detention basins, has enabled the quantification of MP abundance in sediments conveyed by stormwater in urban areas. Sediment sampling was conducted in ten detention basins and one combined sewer overflow (CSO) structure in the Lyon metropolitan area, France. These basins correspond to stormwater outlets of representative urban catchment areas. MP extraction involves densimetric separation and organic matter degradation. MPs were then characterized using micro-Fourier infrared spectroscopy and siMPle software. This protocol identified MPs between 50 and 500 μm in the study sites. This study highlights the high abundance in the collected sediment samples, ranging from 2,525 to 1,218,82 MP kg−1 by dry weight sediment. The MPs found have a median size around 115 μm, making them very small MPs that are mainly composed of polypropylene followed by polyethylene and polystyrene or polyethylene terephthalate. The abundance of MPs in sediments is associated with the land use type. Catchments in predominantly industrial and commercial zones were more significantly polluted with MPs compared with those in predominantly agricultural or heterogeneous zones. Finally, statistical analyses revealed links between sedimentary and urban parameters and MPs concentrations. Several recommendations are given for future research, notably concerning the analyzing of stormwater sediments to understand the sources of MP pollution.
Read full abstract