This paper proposes a multi-electrolyzer switching scheduling strategy based on the Pelican Optimization Algorithm (POA) to enhance the efficiency of large-scale wind power hydrogen production systems. To validate the effectiveness of the proposed strategy, we analyzed wind power data from three typical days in northern Hebei, China, with a 2.5 MW wind turbine output. We designed three strategies for comparative analysis: a simple start-stop strategy, a rule-based multi-electrolyzer switching strategy, and a POA-based multi-electrolyzer switching strategy. The study results demonstrate that the POA-based strategy exhibits higher hydrogen production efficiency and system stability under various wind conditions. Particularly, in extreme wind scenarios, this strategy significantly reduces the start-stop cycles of electrolyzers, thereby lowering operational costs and improving overall system performance. The main contribution of this study lies in the novel optimization algorithm and its validation through real-world data, demonstrating its effectiveness in large-scale wind power hydrogen production systems. Our findings provide new insights for enhancing the utilization of renewable energy and the economics of hydrogen production systems.
Read full abstract