There is no kinetic data and rate equation that can be used directly for catalytic combustion of acrylonitrile tail gas, which leads to the multi-stage combined catalytic kinetic model of acrylonitrile tail gas collaborative removal. In the actual application process, affected by the internal and external diffusion, this paper proposes the multi-stage combined catalytic kinetic research and CFD simulation analysis of acrylonitrile tail gas collaborative removal. Based on the judgment of multi-stage combined catalytic reaction rules of acrylonitrile tail gas collaborative removal, the multi-stage combined catalytic reaction network of acrylonitrile tail gas collaborative removal is solved by matrix transformation. The possible reaction path in the multi-stage combined catalytic reaction network of acrylonitrile tail gas collaborative removal is solved. For quantitative calculation of product distribution, each step of reaction parameters and dynamic factors are required. According to the mechanism of positive carbon ion reaction, materials were used Studio software and genetic algorithm are used to calculate the dynamic factors and determine the dynamic parameters; the grid automatic generator AutoGrid5 embedded in the Fine/TurboTM software package is used to generate the CFD simulation network, and the iterative algorithm is used to calculate the limit value of the CFD simulation; the S-A model in the CFD simulation platform is used to get the modified value of the dynamic mathematical model, and the dynamic factors and parameters are brought into it to establish the CA mathematical model of multi-stage combined catalytic kinetics for the CO removal of olefine and nitrile tail gas. The experimental results show that, under the same experimental device and parameters, the internal and external diffusion effects of the multi-stage combined catalytic kinetic model of acrylonitrile tail gas collaborative removal are detected. The multi-stage combined catalytic kinetic model of acrylonitrile tail gas collaborative removal in this study uses 10-20 mesh catalyst, and the retention time of acrylonitrile tail gas is less than 4.62 s, the internal and external diffusion will not affect the acrylonitrile tail gas collaborative removal The practical application of the kinetic model for the removal of multi-stage combined catalysis.