Objective. Volumetric changes in the amygdaloid and hippocampal subfields have been observed in children with combined attention deficit hyperactivity disorder (ADHD-C). The purpose of this study was to investigate whether volumetric changes in the amygdaloid and hippocampal subfields could be used to predict disease severity in children with ADHD-C. Approach. The data used in this study was from ADHD-200 datasets, a total of 76 ADHD-C patients were included in this study. T1 structural MRI data were used and 64 structural features from the amygdala and hippocampus were extracted. Three ADHD rating scales were used as indicators of ADHD severity. Sequential backward elimination (SBE) algorithm was used for feature selection. A linear support vector regression (SVR) was configured to predict disease severity in children with ADHD-C. Main results. The three ADHD rating scales could be accurately predicted with the use of SBE-SVR. SBE-SVR achieved the highest accuracy in predicting ADHD index with a correlation of 0.7164 (p < 0.001, tested with 1000-time permutation test). Mean squared error of the SVR was 43.6868, normalized mean squared error was 0.0086, mean absolute error was 3.2893. Several amygdaloid and hippocampal subregions were significantly related to ADHD severity, as revealed by the absolute weight from the SVR model. Significance. The proposed SBE-SVR could accurately predict the severity of patients with ADHD-C based on quantitative features extracted from the amygdaloid and hippocampal structures. The results also demonstrated that the two subcortical nuclei could be used as potential biomarkers in the progression and evaluation of ADHD.
Read full abstract