Gastric cancer (GC) is widely regarded as one of the toughest cancers to treat. Trastuzumab, which targets the human epidermal growth factor receptor 2 (HER2) for GC treatment, has demonstrated clinical success. However, these patients have a high likelihood of developing resistance. Additionally, Claudin18.2 (CLDN18.2) is a promising emerging target for GC treatment. Therefore, therapies that simultaneously target both HER2 and CLDN18.2 targets are of great significance. Here, we constructed a bispecific antibody targeting both HER2 and CLDN18.2 (HC-2G4S; BsAb), which displayed satisfactory purity, thermostability and enhancing antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In a tumor spheroids model of GC, BsAb demonstrated greater therapeutic efficacy than monoclonal antibodies (mAb) or combination treatment strategies. We propose that the enhanced anti-tumor potency of BsAbs in vivo is due to the monovalent binding of single-chain antibodies to more targets due to weaker affinity, resulting in a more potent immune effect function. Therefore, HC-2G4S could be a productive agent for treating GC that is HER2-positive, CLDN18.2-positive, or both, with the potential to overcome trastuzumab resistance and provide significant clinical benefits and expanded indications.
Read full abstract