Abstract

Cancer represents a significant global public health challenge, and conventional cancer therapies such as surgery and chemoradiotherapy are not enough due to the increased complexity of cancer. Nanotechnology has the potential to revolutionize tumor treatments by integrating gene therapy, tumor targeting, and drug delivery. In this study, we demonstrated that Snail2 plays a crucial role in the migration and invasion of lung and liver carcinoma. We proposed a novel approach to synergize the aminated crosslinking dextran coat of superparamagnetic iron oxide nano worms (CLIO-NH2, CN) with small interfering Snail2 RNA (siSnail2). The efficiency of siSnail2 delivery was significantly improved by coating CN with N-Isopropylacrylamide-modified polyethylenimine (CNP). In vitro, experiments revealed that CNP@siSnail2 effectively inhibited cancer cell EMT, migration, and invasion. Moreover, CNP@ siSnail2 promoted cancer cell death through various mechanisms, including apoptosis and ferroptosis. The combination of CNP@ siSnail2 and cisplatin significantly improved the anti-tumor effect of the treatment. Animal models demonstrated that the combined treatment of CNP@ siSnail2 and cisplatin resulted in excellent tumor inhibition effects. Our findings provide a potential combined treatment strategy for cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call