We examine the well-known problem of determining the capacity of multidimensional run-length-limited constrained systems. By recasting the problem, which is essentially a combinatorial counting problem, into a probabilistic setting, we are able to derive new lower and upper bounds on the capacity of (0, <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> )-RLL systems. These bounds are better than all previously-known analytical bounds for <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> ≥ 2, and are tight asymptotically. Thus, we settle the open question: what is the rate at which the capacity of (0, <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> )-RLL systems converges to 1 as <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> → ∞? We also provide the first nontrivial upper bound on the capacity of general ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> , <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> )-RLL systems.