Abstract
We consider the problem of efficient integration of an n-variate polynomial with respect to the Gaussian measure in ℝn and related problems of complex integration and optimization of a polynomial on the unit sphere. We identify a class of n-variate polynomials f for which the integral of any positive integer power fp over the whole space is well approximated by a properly scaled integral over a random subspace of dimension O(log n). Consequently, the maximum of f on the unit sphere is well approximated by a properly scaled maximum on the unit sphere in a random subspace of dimension O(log n). We discuss connections with problems of combinatorial counting and applications to efficient approximation of a hafnian of a positive matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.