Abstract

We consider approximation algorithms for nonnegative polynomial optimization over unit spheres. Such optimization models have wide applications, e.g., in signal and image processing, high order statistics, and computer vision. Since polynomial functions are nonconvex, the problems under consideration are all NP-hard. In this paper, based on convex polynomial optimization relaxations, we propose polynomial-time approximation algorithms with new approximation bounds. Numerical results are reported to show the effectiveness of the proposed approximation algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.