We report a novel sensor-based high throughput screening (HTS) system for identification and quantitation of volatile substances in combinatorial chemical libraries. The measurement method employs a combination of a periodic introduction of a minute amount of a liquid sample into the HTS system, rapid evaporation of volatile components in the sample at room temperature, and dynamic measurement of a generated vapor pulse. These measurements are performed using an array of four 10 MHz acoustic-wave thickness-shear mode sensors coated with different chemically sensitive films. Developed HTS system is applied for screening of multiple samples such as those created in combinatorial chemical libraries of catalyst candidates in an industrially important arene oxidation process. The temporal modulation of the concentration of analyte vapors and measurement of both the temporal profile and the magnitude of the response improves sensor selectivity and makes possible robust identification and quantitation of arene oxidation components such as cresol and benzoquinone in multicomponent combinatorial mixtures with reduced number of sensors in the array. Different solvents such as water, acetonitrile, benzene, and toluene do not alter the response of sensors to analytes. Depending on the gas flow rate, quantitative measurements are performed 10–150 s after the sample introduction and provide significant throughput advantage over gas-chromatographic instruments. Determinations of mixtures of analytes in a variety of solvents are performed using multivariate locally weighted regression. This data analysis method provides the root mean squared error of prediction of less than 2 μg when measurements of cresol and benzoquinone amounts ranging from 0 to 50 μg are performed in 2 μL samples. This method of dynamic sensor-based measurements allows for instrument miniaturization and increases the usefulness of the instrument in space-limited applications. Upon operation of multiple sensors in parallel, effective analysis of dense combinatorial libraries of materials is possible.