The complexities of permafrost changes, driven by climate warming and engineering activities, coupled with challenges in data acquisition, make it crucial and challenging to accurately predict the artificial permafrost table, particularly for subgrades in high-temperature unstable permafrost regions. To address this, this study developed a hybrid machine learning model (RF-LSTM-XGBoost) for permafrost table prediction. By analyzing climate change and ground temperature data from various positions and depths along the subgrade in the Tuotuo River section of the Qinghai-Xizang Highway, the Spearman correlation coefficient method was initially used to determine the important influencing factors. Random Forest (RF), Long Short-Term Memory Neural Network (LSTM), and Extreme Gradient Boosting (XGBoost) models were used to predict the artificial permafrost table, and grid search and cross-validation methods were employed to optimize the hyperparameters of each model. A linear weighted combination method based on the minimum cumulative absolute error was utilized to merge the models, and its performance was compared with the individual RF, LSTM, and XGBoost models. Subsequently, the feature importance of the variables in the machine learning model was analyzed. The results indicated a strong correlation between artificial permafrost table changes and factors such as daily average atmospheric temperature, subgrade surface ground temperature, and subgrade surface ground heat flux during the freezing-thawing cycle. The combined model highlighted daily atmospheric temperature as the most influential predictor, followed by ground heat flux, with the surface ground temperature being less impactful. The combined model demonstrated improved predictive accuracy, with MSE, MAPE, RMSE, MAE, and R2 values of 0.003, 0.052, 0.0085, 0.029, and 0.989, respectively, surpassing those of individual models. This model offers a rapid, accurate, and reliable approach for permafrost table prediction, advancing subgrade stability research in challenging permafrost environments.