Megapixel single-photon avalanche diode (SPAD) arrays have been developed recently, opening up the possibility of deploying SPADs as generalpurpose passive cameras for photography and computer vision. However, most previous work on SPADs has been limited to monochrome imaging. We propose a computational photography technique that reconstructs high-quality color images from mosaicked binary frames captured by a SPAD array, even for high-dyanamic-range (HDR) scenes with complex and rapid motion. Inspired by conventional burst photography approaches, we design algorithms that jointly denoise and demosaick single-photon image sequences. Based on the observation that motion effectively increases the color sample rate, we design a blue-noise pseudorandom RGBW color filter array for SPADs, which is tailored for imaging dark, dynamic scenes. Results on simulated data, as well as real data captured with a fabricated color SPAD hardware prototype shows that the proposed method can reconstruct high-quality images with minimal color artifacts even for challenging low-light, HDR and fast-moving scenes. We hope that this paper, by adding color to computational single-photon imaging, spurs rapid adoption of SPADs for real-world passive imaging applications.
Read full abstract