An europium doped BaO–B2O3–BaCl2 chloroborate glass-ceramic containing a BaCl2 nanocrystalline phase was produced by melt-quenching followed by glass crystallization during annealing. Structural and morphological investigations using x-ray diffraction and scanning electron microscopy have shown fvBaCl2 nanocrystals of about tens of nm size accompanied by a smaller amount of the BaB2O4 crystalline phase. Photoluminescence spectra have indicated the reduction of Eu3+ to Eu2+ during processing in air or a reducing atmosphere. The spectra analysis showed the presence of Eu3+ ions in the borate glass matrix, while the Eu2+ were incorporated in both the BaCl2 nanocrystals and glass matrix. Thermoluminescence properties were due to the recombination of F(Cl) centers and Eu2+ related hole centers produced by irradiation within the BaCl2 nanocrystals. The color impression of the samples and the photoluminescence quantum efficiency were influenced by the glass processing.
Read full abstract