Colon polyp and cancer frequency increase with age, yet little is known about age-related mechanisms underlying development of these neoplasms. Defective DNA damage response and accumulation of unrepaired DNA damage can trigger genomic instability and cellular transformation.Patients with acromegaly have a higher prevalence of colon polyps and, arguably, colon adenocarcinoma, while those with GH signaling deficiency do not develop cancer. We showed that APC+/- mice that all develop colon adenomas exhibit a significant decrease in the number and volume of colon tumors with deletion of the GH transcription factor Prop1. Further, DNA damage response triggered GH expression in colon cells, and GH, in turn, altered DNA damage repair, resulting in DNA damage accumulation and cell transformation both in vitro and in vivo. These findings prompted us to hypothesize that accumulated DNA damage in aging colon induces local GH, suppressing DNA damage repair and creating a milieu consistent with genomic instability favoring neoplastic development.In human colon tissue we now show increased expression of γH2AX, a marker of DNA breaks, associated with increased GH transcription (detected by RNA scope) and translation (assessed by immunohistochemistry) as well as GH induction in both human and murine colon after DNA damaging radiotherapy. In vitro studies support these results, showing GH induction in normal human colon epithelial cells, fibroblasts, and 3D human intestinal organoids after DNA damage. Of note, local GH was secreted in the medium, indicating a paracrine effect. Paracrine/autocrine GH expression in these cellular models resulted in suppression of p53, induction of EMT, and attenuation of DNA damage response, and accumulated unrepaired DNA damage in human colon cells and in human intestinal organoids. In vivo, colon cells infected with lentivirus expressing GH generated more metastases than did cells expressing control vector. Co-culturing of human normal colon fibroblasts expressing GH together with normal human colon cells led to increased motility and accumulation of DNA damage as well as increased proliferation of epithelial cells on a gut-on-a-chip microfluidic device, confirming paracrine GH effects. In an in vitro model of aging, culturing human intestinal organoids for up to 2 months resulted in decreased telomere length and increased GH mRNA and protein expression associated with suppressed DNA damage response evident by decreased phosphorylation of ATM and DNA-PKcs, both kinases involved in DNA repair, and DNA damage accumulation assessed by Comet assay. Suppression of GH in these aging organoids led to increased phospho-p53 and reduced DNA damage. Although somatotroph axis endocrine activity decreases with age, local GH induced in response to age-related DNA damage may trigger a “field change,” creating a milieu favorable for colon neoplastic development.
Read full abstract