Abstract

Ethnopharmacological relevanceWu-Mei-Wan (WMW), a classic traditional Chinese herb medicine, is one of the most important formulations to treat digestive diseases from ancient times to the present. Previous study showed that WMW has satisfactory curative effects on experimental colitis, which motivating the application of WMW on colitis-associated complications. Aim of the studyIntestinal fibrosis is usually considered to be a common complication of inflammatory bowel disease (IBD), particularly Crohn's disease (CD). Currently, no effective preventive measures or medical therapies are available for that. This work was designed to evaluate the effect and related mechanism of WMW on chronic colitis-associated intestinal fibrosis mice model. Materials and methodsThe chronic colitis-associated intestinal fibrosis mice model was established by weekly intrarectal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The mice survival rate, disease activity index (DAI), colon length and histological score were examined to assess the therapeutic effect of WMW. Masson's trichrome staining, hydroxyproline assay, immunohistochemical staining and western blot analysis were used to evaluate fibrosis level. Colon inflammation was determined by ELISA and immunofluorescence staining. Immunofluorescence staining was used to evaluate fibroblasts proliferation and epithelial to mesenchymal transition (EMT), and the expression of key molecules in fibrosis was analyzed by western blot. ResultsHere we showed that WMW alleviates chronic colitis with improved survival rate, DAI, colon length and histological score. WMW inhibited the progression of intestinal fibrosis, decreased the expression of various fibrosis markers, such as α-SMA, collagen I, MMP-9 and fibronectin. In addition, WMW treatment reduced cytokines IL-6 and IFN-γ, and downregulated proinflammatory NF-κBp65 and STAT3 signaling pathways. Importantly, administration of WMW led to the inhibition of colon fibroblast proliferation and EMT, which are important mediators during fibrosis. Several key profibrotic pathways, including TGF-β/Smad and Wnt/β-catenin pathways, were downregulated by WMW treatment. ConclusionOur work demonstrated that WMW can prevent intestinal fibrosis and the mechanisms involved may be related to the inhibition of colon fibroblasts activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.