BackgroundConservation of equine semen in the liquid state is a central procedure in horse breeding and constitutes the basis of associated reproductive technologies. The intense mitochondrial activity of the stallion spermatozoa increases oxidative stress along the storage period, leading to sperm demise within 24–48 h of storage, particularly when maintained at room temperature. Recently, the relationship between metabolism and oxidative stress has been revealed. The study aimed to extend the period of conservation of equine semen, at room temperature through modification of the metabolites present in the media. Material and methodsProcessed ejaculates (n = 9) by single-layer colloid centrifugation were split in different aliquots and extended in Tyrode's basal media, or modified Tyrode's consisting of 1 mM glucose, 1 mM glucose 10 mM pyruvate, 40 mM glucose, 40 mM Glucose 10 mM pyruvate, 67 mM glucose and 67 mM glucose 10 mM pyruvate. At time 0h, and after 24 and 96 h of storage, motility was evaluated by CASA, while mitochondrial production of Reactive oxygen species (ROS), and intracellular Ca2+ concentrations were determined via flow cytometry using Mitosox Red and Fluo-4 respectively. ROS and Ca2+ were estimated as Relative Fluorescence Units (RFU) in compensated, arcsin-transformed data in the live sperm population. ResultsAfter 48 h of incubation, motility was greater in all the 10 mM pyruvate-based media, with the poorest result in the 40 mM glucose (41 ± 1.1 %) while the highest motility was yielded in the 40 mM glucose 10 mM pyruvate aliquot (60.3 ± 3.5 %; P < 0.001); after 96 h of storage highest motility values were observed in the 40 mM glucose 10 mM pyruvate media (23.0 ± 6.2 %) while the lowest was observed in the 1 mM glucose media was 9.2 ± 2.0 % (P < 0.05). Mitochondrial ROS was lower in the 40 mM glucose 10 mM pyruvate group compared to the 40 mM glucose (P < 0.01). Over time Ca2+ increased in all treatment groups compared to time 0h. Discussion and conclusionViable spermatozoa may experience oxidative stress and alterations in Ca2+ homeostasis during prolonged storage, however, these effects can be reduced by regulating metabolism. The 40 mM glucose- 10 mM pyruvate group yielded the highest sperm quality parameters.