Cysteine is the most reactive naturally occurring amino acid due to the presence of a free thiol, presenting a tantalizing handle for covalent modification of peptides/proteins. Although many mass spectrometry experiments could benefit from site-specific modification of Cys, the utility of direct arylation has not been thoroughly explored. Recently, Spokoyny and co-workers reported a Au(III) organometallic reagent that robustly arylates Cys and tolerates a wide variety of solvents and conditions. Given the chromophoric nature of aryl groups and the known susceptibility of carbon-sulfur bonds to photodissociation, we set out to identify an aryl group that could efficiently cleave Cys carbon-sulfur bonds at 266 nm. A streamlined workflow was developed to facilitate rapid examination of a large number of aryls with minimal sample using a simple test peptide, RAAACGVLK. We were able to identify several aryl groups that yield abundant homolytic photodissociation of the adjacent Cys carbon-sulfur bonds with short activation times (<10 ms). In addition, we characterized the radical products created by photodissociation by subjecting the product ions to further collisional activation. Finally, we tested Cys arylation with human hemoglobin, identified reaction conditions that facilitate efficient modification of intact proteins, and evaluated the photochemistry and activation of these large radical ions.
Read full abstract