Abstract

As the most abundant molecule in the universe, collisions involving H2 have important implications in astrochemistry. Collisions between hydrogen molecules also represent a prototype for assessing various dynamic methods for understanding fundamental few-body processes. In this work, we develop a new and highly accurate full-dimensional potential energy surface (PES) covering all reactive channels of the H2 + H2 system, which extends our previously reported H2 + H2 nonreactive PES [J. Chem. Theory Comput., 2021, 17, 6747] by adding 39,538 additional ab initio points calculated at the MRCI/AV5Z level in the reactive channels. The global PES is represented with high fidelity (RMSE = 0.6 meV for a total of 79,000 points) by a permutation invariant polynomial neural network (PIP-NN) and is suitable for studying collision-induced dissociation, single-exchange, as well as four-center exchange reactions. Preliminary quasi-classical trajectory studies on the new PIP-NN PES reveal strong vibrational enhancement of all reaction channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.