MatriXX is a two-dimensional ion chamber array designed for IMRT/VMAT (RapidArc, IMAT, etc.) dose verifications. Its dosimetric properties have been characterized for megavoltage beams in a number of studies; however, to the best of the authors' knowledge, there is still a lack of an investigation into its performance in the peripheral or low dose regions. In this work, the authors have carried out a systematic study on this issue. The authors compare the performance of MatriXX with a cylindrical ion chamber in solid water phantoms in the peripheral dose regions. The comparisons are performed for a number of typical irradiation conditions that involve different gantry and/or MLC motions, field sizes, and distances to the target including static gantry/open fields, static gantry/sweeping MLC gap (mimicking an IMRT delivery), dynamic gantry/oscillating sweeping MLC gap (mimicking a VMAT delivery), as well as clinical IMRT and VMAT plans. MatriXX, when used according to the manufacturer's recommendations, is found to disagree with an ion chamber in peripheral dose regions. This disagreement has been attributed to four types of MatriXX errors, namely, positive bias, over-response to scattered doses, round-off error, and angular dependence, all of which contribute to dose inaccuracies in the peripheral regions. The positive bias, which is independent of the dose level, is cumulative when MatriXX operates in the movie mode. The accumulation is proportional to the number of movie frames (snaps) when the sampling time is greater than 500 ms and is proportional to the overall movie time for a sampling time shorter than 500 ms. This behavior suggests multiple sources of the bias. MatriXX is also found to over-respond to peripheral doses by about 2.0% for the regions investigated in this work (3-15 cm from the field edge), where phantom scatter and collimator scatter dominate. Round-off error is determined to be due to insufficient precision in conversion of the raw signals to MatriXX software data for low doses. Angular dependence is defined as the dose response of MatriXX at different gantry angles. Up to 8% difference in detector response has been observed between 0 degree and 180 degrees. Possible sources of these errors are discussed and a correction method is suggested. With corrections, MatriXX shows good agreement with the ion chamber in all cases involving different gantry and/or MLC dynamics, as well as the clinical plans. For both primary and peripheral doses, MatriXX shows dose linearity down to 2 cGy with an accuracy of within 1% of the local dose. The performance of MatriXX has been systematically evaluated in the peripheral dose regions. Major sources of error associated with MatriXX are identified and a correction method is suggested. This method has been successfully tested using both experimental and clinical plans. In all cases, good agreements between MatriXX and an ion chamber are achieved after corrections. The authors conclude that with proper corrections, MatriXX can be reliably used for peripheral dose measurements within the ranges studied.
Read full abstract