The strategy for cold-hardiness and water balance features of two closely related families of Coleoptera, Cerambycidae and Chrysomelidae, were investigated. Cerambycids were freeze-avoiding with low supercooling points, whereas chrysomelids froze at high temperatures and were tolerant to freezing. Hence, the two families have adopted different strategies for cold-hardiness. Due to their low trans-cuticular water permeability, the cerambycids have low rates of evaporative water loss. Chrysomelids have much higher trans-cuticular water permeability, but freezing brings their body fluids in vapour pressure equilibrium with ice and prevents evaporative water loss. The differences in cold-hardiness strategies and rates of water loss are likely to reflect the water content of the diets of the two families. Cerambycids feed on dry wood with low water content, causing a restrictive water balance. Chrysomelids feed on leaves with high water content and may use evaporation through the cuticle as a route of water excretion. Haemolymph ice nucleators help chrysomelids to freeze at a high temperature and thus to maximize the period they spend in the water saving frozen state. The diet-related differences in water balance may be the reason why the two families have developed different strategies for cold-hardiness.