Necrotrophic pathogens cause serious threats to agricultural crops, and understanding the resistance genes and their genetic networks is key to breeding new plant cultivars with better resistance traits. Although Alternaria alternata causes black spot in important leafy brassica vegetables, and leads to significant loss of yield and food quality, little is known about plant-A. alternata interactions. In this study, we used a unique and large collection of single, double and triple mutant lines of defence metabolite regulators in Arabidopsis to explore how these transcription factors and their epistatic networks may influence A. alternata infections. This identified nine novel regulators and 20 pairs of epistatic interactions that modulate Arabidopsis plants' defence responses to A. alternata infection. We further showed that the glucosinolate 4-methoxy-indol-3-ylmethyl is the only glucosinolate consistently responsive to A. alternata infection in Col-0 ecotype. With the further exploration of the regulators and the genetic networks on modulating the accumulation of glucosinolates under A. alternata infection, an inverted triangle regulatory model was proposed for Arabidopsis plants' defence responses at a metabolic level and a phenotypic level.
Read full abstract