Abstract
BackgroundThe architecture of inflorescence and the development of floral organs can influence the yield of seeds and have a significant impact on plant propagation. E-class floral homeotic MADS-box genes exhibit important roles in regulation of floral transition and differentiation of floral organs. Woad (Isatis indigotica) possesses unique inflorescence, floral organs and fruit. However, very little research has been carried out to determine the function of MADS-box genes in this medicinal cruciferous plant species.ResultsSEPALLATA orthologs in I. indigotica were cloned by degenerate PCR. The sequence possessing the highest identity with SEP2 and SEP4 of Arabidopsis were named as IiSEP2 and IiSEP4, respectively. Constitutive expression of IiSEP2 in Columbia (Col-0) ecotype of Arabidopsis led to early flowering, and the number of the flowers and the lateral branches was reduced, indicating an alteration in architecture of the inflorescences. Moreover, the number of the floral organs was declined, the sepals were turned into carpelloid tissues bearing stigmatic papillae and ovules, and secondary flower could be produced in apetalous terminal flowers. In 35S::IiSEP4-GFP transgenic Arabidopsis plants in Landsberg erecta (Ler) genetic background, the number of the floral organs was decreased, sepals were converted into curly carpelloid structures, accompanied by generation of ovules. Simultaneously, the size of petals, stamens and siliques was diminished. In 35S::IiSEP4-GFP transgenic plants of apetalous ap1 cal double mutant in Ler genetic background, the cauliflower phenotype was attenuated significantly, and the petal formation could be rescued. Occasionally, chimeric organs composed of petaloid and sepaloid tissues, or petaloid and stamineous tissues, were produced in IiSEP4 transgenic plants of apl cal double mutant. It suggested that overexpression of IiSEP4 could restore the capacity in petal differentiation. Silencing of IiSEP4 by Virus-Induced Gene Silencing (VIGS) can delay the flowering time, and reduce the number and size of the floral organs in woad flowers.ConclusionAll the results showed that SEPALLATA-like genes could influence the architecture of the inflorescence and the determinacy of the floral meristems, and was also related to development of the floral organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.