Abstract

This study endeavored to develop a nicotinamide adenine dinucleotide (NAD+) metabolism-related biomarkers in gastric cancer (GC), which could provide a theoretical foundation for prognosis and therapy of GC patients. In this study, differentially expressed genes (DEGs1) between GC and paraneoplastic tissues were overlapped with NAD+ metabolism-related genes (NMRGs) to identify differentially expressed NMRGs (DE-NMRGs). Then, GC patients were divided into high and low score groups by gene set variation analysis (GSVA) algorithm for differential expression analysis to obtain DEGs2, which was overlapped with DEGs1 for identification of intersection genes. These genes were further analyzed using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses to obtain prognostic genes for constructing a risk model. Enrichment and immune infiltration analyses further investigated investigate the different risk groups, and qRT-PCR validated the prognostic genes. Initially, we identified DE-NMRGs involved in NAD biosynthesis, with seven (DNAJB13, CST2, THPO, CIDEA, ONECUT1, UPK1B and SNCG) showing prognostic significance in GC. Subsequent, a prognostic model was constructed in which the risk score, derived from the expression profiles of these genes, along with gender, emerged as robust independent predictors of patient outcomes in GC. Enrichment analysis linked high-risk patients to synaptic membrane pathways and low-risk to the CMG complex pathway. Tumor immune infiltration analysis revealed correlations between risk scores and immune cell abundance, suggesting a relationship between NAD+ metabolism and immune response in GC. The prognostic significance of our identified genes was validated by qRT-PCR, which confirmed their upregulated expression in GC tissue samples. In this study, seven NAD+ metabolism-related markers were established, which is of great significance for the development of prognostic molecular biomarkers and clinical prognosis prediction for gastric cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.