We developed a low-cost, user-friendly complementary research tool to evaluate autonomic nervous system (ANS) activity at varying levels of cognitive workload. This was achieved using visual stimuli as cognitive tasks, administered through a specially designed computer-based test battery. To assess sympathetic stress responses, skin conductance response (SCR) was measured, and electrocardiograms (ECG) were recorded to evaluate heart rate variability (HRV), an indicator of cardiac vagal tone. Twenty-five healthy adults participated in the study. SCR and ECG recordings were made during both tonic and phasic phases using a computer-based system designed for visual stimuli. Participants performed a button-pressing task upon seeing the target stimulus, and the relationship between reaction time (RT) and cognitive load was evaluated. Analysis of the data showed higher skin conductance levels (SCLs) during tasks compared to baseline, indicating successful elicitation of sympathetic responses. RTs differed significantly between simple and cognitive tasks, increasing with mental load. Additionally, significant changes in vagally mediated HRV parameters during tasks compared to baseline highlighted the impact of cognitive load on the parasympathetic branch of the ANS, thereby influencing the brain-heart connection. Our findings indicate that the developed research tool can successfully induce cognitive load, significantly affecting SCL, RTs, and HRV. This validates the tool's effectiveness in evaluating ANS responses to cognitive tasks.