Abstract
Understanding the operator's cognitive workload is crucial for efficiency and safety in human–machine systems. This study investigated how cognitive workload modulates cardiac autonomic regulation during a standardized military simulator flight. Military student pilots completed simulated flight tasks in a Hawk flight simulator. Continuous electrocardiography was recorded to analyze time and frequency domain heart rate variability (HRV). After the simulation, a flight instructor used a standardized method to evaluate student pilot's individual cognitive workload from video-recorded flight simulator data. Results indicated that HRV was able to differentiate flight phases that induced varying levels of cognitive workload; an increasing level of cognitive workload caused significant decreases in many HRV variables, mainly reflecting parasympathetic deactivation of cardiac autonomic regulation. In conclusion, autonomic physiological responses can be used to examine reactions to increased cognitive workload during simulated military flights. HRV could be beneficial in assessing individual responses to cognitive workload and pilot performance during simulator training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.