Background and purposeA substantial fraction of those who had Alzheimer's Disease (AD) pathology on autopsy did not have dementia in life. While biomarkers for AD pathology are well-developed, biomarkers specific to cognitive domains affected by early AD are lagging. Diffusion MRI (dMRI) of the fornix is a candidate biomarker for early AD-related cognitive changes but is susceptible to bias due to partial volume averaging (PVA) with cerebrospinal fluid. The purpose of this work is to leverage multi-shell dMRI to correct for PVA and to evaluate PVA-corrected dMRI measures in fornix as a biomarker for cognition in AD. MethodsThirty-three participants in the Cleveland Alzheimer's Disease Research Center (CADRC) (19 with normal cognition (NC), 10 with mild cognitive impairment (MCI), 4 with dementia due to AD) were enrolled in this study. Multi-shell dMRI was acquired, and voxelwise fits were performed with two models: 1) diffusion tensor imaging (DTI) that was corrected for PVA and 2) neurite orientation dispersion and density imaging (NODDI). Values of tissue integrity in fornix were correlated with neuropsychological scores taken from the Uniform Data Set (UDS), including the UDS Global Composite 5 score (UDSGC5). ResultsStatistically significant correlations were found between the UDSGC5 and PVA-corrected measure of mean diffusivity (MDc, r = −0.35, p < 0.05) from DTI and the intracelluar volume fraction (ficvf, r = 0.37, p < 0.04) from NODDI. A sensitivity analysis showed that the relationship to MDc was driven by episodic memory, which is often affected early in AD, and language. ConclusionThis cross-sectional study suggests that multi-shell dMRI of the fornix that has been corrected for PVA is a potential biomarker for early cognitive domain changes in AD. A longitudinal study will be necessary to determine if the imaging measure can predict cognitive decline.
Read full abstract