Proteins at the cell surface connect signaling networks and largely determine a cell's capacity to communicate and interact with its environment. In particular, variations in transcriptomic profiles are often observed between healthy and diseased cells, leading to distinct sets of cell-surface proteins. For these reasons, cell-surface proteins may act as biomarkers for the detection of cells of interest in tissues or body fluids, are often the target of pharmaceutical agents, and hold significant promise in the clinical practice for diagnosis, prognosis, treatment development, and evaluation of therapy response. Therefore, implementing robust methods to identify condition-specific cell-surface proteins is of pivotal importance to advance biomedical research. We developed SurfR, an R/Bioconductor package providing a streamlined end-to-end workflow for computationally identifying surface protein-coding genes from expression data. Our user-friendly, comprehensive workflow performs systematic expression data retrieval from public databases, differential gene expression across conditions, integration of datasets, enrichment analysis, identification of targetable proteins on a condition of interest, and data visualization. SurfR is released under GNU-GPL-v3.0 License. Source code, documentation, examples, and tutorials are available through Bioconductor (http://www.bioconductor.org/packages/SurfR). RMD notebooks with the use cases code described in the manuscript can be found on GitHub (https://github.com/auroramaurizio/SurfR_UseCases).
Read full abstract