Directional long drilling on the roof is an effective gas control measure in the goaf, but there is little research on the stability of the surrounding rock. In this study, the geological conditions of the #4 coal seam in the Tingnan Coal Mine, Shaanxi Province, China taken as the application background, and the deformation characteristics of boreholes under four typical coal and rock conditions were first analyzed based on the Universal Distinct Element Code (UDEC) numerical simulation. Secondly, the stress, strain, and plastic deformation of the rock surrounding the borehole with different diameters were carried out using the Fast Lagrangian Analysis of Continua 3D (FLAC 3D). The effect of the casing on the stability of the borehole was also simulated. The results showed that the borehole stability of coal and mudstone was lower than that of fine-grained sandstone and coarse-grained sandstone. The larger the borehole diameter, the lower the stability. The borehole tended to be unstable, especially when the diameter was 160 mm and 200 mm. Traditional pipes can provide some protection, but for large boreholes, the protection is poor. Based on the above research, uniaxial compression tests were carried out on various internal support tubes, such as ‘line-shaped’, ‘Y-shaped’, and ‘cross-shaped’. The results showed that the cross-shaped pipe had the highest compressive strength, which was 4–5 times that of the other types of protective pipe and had a good protective effect. The research results can provide reliable technical support for the protection of directional boreholes on roofs through strata and have important implications for the popularization and application of the directional long borehole technique.
Read full abstract