Gemcitabine is a widely used anti-cancer drug of pyrimidine structure, which can exist as a free base molecular form in crystals. Tautomers are structural isomers of molecules, which interconvert via proton transfer. Mechano-chemistry studies reactions of solids under mechanical impact. We investigated gemcitabine free base for the presence of specific molecular tautomers, using ATR-FTIR spectroscopic analysis, powder XRD, optical microscopy and HPLC. The amino-keto tautomer has the characteristic infrared (IR) peak of the amino group at 3390 cm−1. For the first time, the imino-keto tautomer of gemcitabine free base was detected. The imino-keto tautomer has the characteristic IR peak of the =N–H group, and its peak due to the CO group in pyrimidine ring is shifted vs. that of the amino-keto tautomer. This serves as the unique spectroscopic “fingerprints” of these tautomers. The ATR-FTIR spectroscopic analysis shows that gemcitabine free base can be enriched with the amino-keto or the imino-keto tautomer. Further, we studied the transformation of gemcitabine free base in crystals between its tautomers under conditions of liquid-assisted grinding (LAG). The imino-keto tautomer undergoes tautomerization to the amino-keto tautomer, while the amino-keto tautomer remains stable. No destruction of molecules of gemcitabine free base, when present as either tautomer, occurs during LAG as was verified by the HPLC-UV analysis. LAG is a new, straightforward, facile and fast method to interconvert tautomers in crystals, and ATR-FTIR spectroscopy is a method of choice to study tautomerization reactions of pharmaceuticals. The presented approach is promising for analysis of crystals of drugs containing one or more than one tautomer, and the knowledge-driven design of composite materials, which contain specific tautomeric molecular forms of pyrimidines, purines and other biologically active heterocyclic compounds.