Renewable energy sources are becoming increasingly crucial in the global energy industry and are acknowledged as a significant substitute for fossil fuels. Oil palm fronds are a type of biomass fuel that can be utilized as a substitute for fossil fuels in the combustion process of boilers. Co-firing (HT-FRD) is a beneficial technology for reducing exhaust gas emissions generated by coal-burning power stations. By utilizing computational fluid dynamics (CFD), this study has modeled and evaluated co-firing palm frond residue (HT-FRD) with hydrothermal treatment into a 315 MWe boiler. In the simulation, six different HT-FRD co-firing ratios, 0%, 5%, 15%, 25%, 35%, and 50%, were used to demonstrate the differences in combustion characteristics and emissions in the combustion chamber. The data indicate that HT-FRD co-firing can enhance temperature distribution, velocity, and unburned particles. All in all, co-firing conditions with 5–15% HT-FRD ratios appear to have the most favorable combustion temperature, velocity, and exhaust gas characteristics.
Read full abstract