Various recent researches in bioinformatics demonstrated that clustering is a very efficient technique for sequence analysis. Spectral clustering is particularly efficient for highly divergent sequences and GMMs (Gaussian Mixture Models) are often able to cluster overlapping groups if given an adequately designed embedding. The current study used spectral embedding and Mixture Models for clustering potentially divergent biological sequences. The research approach resulted in a pipeline consisting of the following four steps. The first step consists of aligning the biological sequences. The pairwise affinity of the sequences is computed in the second step. Then the Laplacian Eigenmap embedding of the data is performed in the third step. Finally, the last step consists of a GMM-based clustering. Improving the quality of the generated clustering and the performance of this approach is directly related to the enhancement of each one of these four steps. The main contribution is proposing four GMM-based algorithms for automatically selecting the optimal number of clusters and optimizing the clustering quality. A clustering quality assessment method, based on phylogenetic trees, is also proposed. Moreover, a performance study and analysis have been conducted while testing different clustering methods and GMM implementations. Experimental results demonstrated the superiority of using the BIC (Bayesian Information Criterion) for selecting the optimal GMM configuration. Significant processing speed improvements were also recorded for the implementation of the proposed algorithms.