Abstract

Abstract We introduce graph clustering quality measures based on comparisons of global, intra- and inter-cluster densities, an accompanying statistical significance test and a step-by-step routine for clustering quality assessment. Our work is centred on the idea that well-clustered graphs will display a mean intra-cluster density that is higher than global density and mean inter-cluster density. We do not rely on any generative model for the null model graph. Our measures are shown to meet the axioms of a good clustering quality function. They have an intuitive graph-theoretic interpretation, a formal statistical interpretation and can be tested for significance. Empirical tests also show they are more responsive to graph structure, less likely to breakdown during numerical implementation and less sensitive to uncertainty in connectivity than the commonly used measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.