The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is a promising biotechnology tool for genome editing. However, in living organisms, several pharmacokinetic challenges arise, including off-target side effects due to incorrect distribution, low bioavailability caused by membrane impermeability, and instability resulting from enzymatic degradation. Therefore, innovative delivery strategies must be developed to address these issues. Modified nanoparticles offer a potential solution for the non-invasive delivery of CRISPR/Cas9 ribonucleoproteins (Cas9 RNPs). Cas9 RNPs encapsulated in nanoparticles are protected from enzymatic degradation, similar to how microRNAs are shielded within exosomes. It is well-established that certain materials, including proteins, are expressed selectively in specific cell types. For example, the α-7 nicotinic receptor is expressed in endothelial and neuronal cells, while the αvβ3 integrin is expressed in cancer cells. These endogenous materials can facilitate receptor-mediated endocytosis or transcytosis. Nanoparticles encapsulating Cas9 RNPs and coated with ligands targeting such receptors may be internalized through receptor-mediated mechanisms. Once internalized, Cas9 RNPs could perform the desired gene editing in the nucleus after escaping the endosome through mechanisms such as the proton sponge effect or membrane fusion. In this review, I discuss the potential and advantages of delivering Cas9 RNP-encapsulated nanoparticles coated with ligands through receptor-mediated endocytosis or transcytosis.
Read full abstract