Abstract

Sterol regulatory element-binding protein 1 (SREBP1) is an important transcription factor that controls lipid metabolism and adipogenesis. Two isoforms, SREBP1a and SREBP1c, are generated by alternative splicing of the first exon of the SREBF1 gene. The porcine SREBF1 gene has mainly been studied for its role in lipid metabolism in adipose tissues, but little is known about its involvement, and the role of its two isoforms, in adipogenesis. The aim of the present study was to introduce a deletion in the 5'-regulatory region of the SREBF1c gene, considered crucial for adipogenesis, using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. This approach allows for the evaluation of how inhibiting SREBF1c transcription affects the expression of other genes essential for adipocyte differentiation, particularly PPARG, CEBPA, CEBPB, CEBPD, GATA2, and FABP4. It was observed that disrupting the SREBF1c isoform had no effect on the GATA2 gene but did result in a decrease in the expression of the CEBPA and CEBPD genes, an increase in the expression of CEBPB, and an inhibition in the expression of the PPARG and FABP4 genes. These changes in gene expression blocked adipogenesis, as could be seen by the failure of lipid droplets to accumulate. Our results provide evidence highlighting the pivotal role of the SREBP1c isoform in the regulation of porcine adipogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.