In this paper, we study Conjecture II.1.9 of [A. B. Buan, O. Iyama, I. Reiten and J. Scott, Cluster structures for 2-Calabi–Yau categories and unipotent groups, Compos. Math. 145(4) (2009) 1035–1079], which said that any maximal rigid object without loops or 2-cycles in its quiver is a cluster-tilting object in a connected Hom-finite triangulated 2-CY category [Formula: see text]. We obtain some conditions equivalent to the conjecture, and by using them we prove the conjecture.