Abstract

We introduce a new class of finite-dimensional gentle algebras, the surface algebras, which are constructed from an unpunctured Riemann surface with boundary and marked points by introducing cuts in internal triangles of an arbitrary triangulation of the surface. We show that surface algebras are endomorphism algebras of partial cluster-tilting objects in generalized cluster categories, we compute the invariant of Avella-Alaminos and Geiss for surface algebras and we provide a geometric model for the module category of surface algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.