The sustainable cultivation of canola is under threat from clubroot disease (Plasmodiophora brassicae). The pathogen's resting spores can survive in the soil for extended periods, complicating disease management. Therefore, effective clubroot control requires a combination of tactics that provide multiple layers of protection. Management strategies have focused on pathogen avoidance and reducing disease levels in infested fields. The sanitation of machinery and field equipment remains the most effective method for preventing the pathogen's introduction into non-infested fields. For disease reduction, crop rotation, liming, chemical control, and host resistance are commonly employed, with the use of clubroot-resistant cultivars being the most effective to date. However, resistance breakdown has been observed within four years of the introduction of new cultivars, jeopardizing the long-term effectiveness of this approach. A promising yet underexplored strategy is the use of cultivar mixtures. This approach leverages mechanisms such as the dilution effect, the barrier effect, induced resistance, disruptive selection, and the compensatory effect to control the disease. Cultivar mixtures have the potential to reduce the impact of clubroot on canola production while preserving pathogen population structure, thereby minimizing the likelihood of resistance breakdown. Given its potential, further research into cultivar mixtures as a management strategy for clubroot disease is warranted.
Read full abstract