A Monte Carlo (MC) programme was written using the dose point kernel method to calculate doses in the roof zone of a building from nearby releases of radioactive gases. A Gaussian Plume Model (GPM) was parameterised to account for near-field building effects on plume spread and reflection from the roof. Rooftop recirculation zones and building-generated plume spread effects were accounted in a novel Dual Gaussian Plume (DGP) formulation used with the MC model, which allowed for the selection of angle of approach flow, plume release height in relation to the building and position of the release point in relation to the leading edge of the building. Three-dimensional wind tunnel concentration field data were used for the parameterisation. The MC code used the parameterised concentration field to calculate the contributions to effective dose from inhalation, cloud immersion from positron/beta particles, and gamma-ray dose for a wide range of receptor dose positions in the roof zone, including receptor positions at different heights above the roof. Broad trends in predicted radiation dose with angle of approach flow, release position in relation to the building and release height are shown. Alternative approaches for the derivation of the concentration field are discussed.
Read full abstract