With the availability of modern assistive techniques, ambient intelligence, and the Internet of Things (IoT), various innovative assistive environments have been developed, such as driving assistance systems (DAS), where the human driver can be provided with physical and emotional assistance. In this human–machine collaboration system, haptic interaction interfaces are commonly employed because they provide drivers with a more manageable way to interact with other components. From the view of control system theory, this is a typical closed-loop feedback control system with a human in the loop. To make such a system work effectively, both the driving behaviour factors, and the electrical–mechanical components should be considered. However, the main challenge is how to deal with the high degree of uncertainties in human behaviour. This paper aims to provide an insightful overview of the relevant work. The impact of various types of haptic assistive driving systems (haptic guidance and warning systems) on driving behaviour performance is discussed and evaluated. In addition, various driving behaviour modelling systems are extensively investigated. Furthermore, the state-of-the-art driving behaviour controllers are analysed and discussed in driver–vehicle–road systems, with potential improvements and drawbacks addressed. Finally, a prospective approach is recommended to design a robust model-free controller that accounts for uncertainties and individual differences in driving styles in a haptic assistive driving system. The outcome indicated that the haptic feedback system applied to the drivers enhanced their driving performance, lowered their response time, and reduced their mental workload compared to a system with auditory or visual signals or without any haptic system, despite some annoyances and system conflicts. The driving behaviour modelling techniques and the driving behaviour control with a haptic feedback system have shown good matching and improved the steering wheel’s base operation performance. However, mathematical principles, a statistical approach, and the lack of consideration of the individual differences in the driver–vehicle–road system make the modelling and the controller less robust and inefficient for different driving styles.