Sustainability in the agricultural field suggests the conservation and maintenance of a natural environment of soil. Nevertheless, in the potato production chain, the mechanized harvest is carried out with the concurring removal of impurities and fertile soil. The authors have developed a new spiral potato cleaner which is able to capture and efficiently remove soil lumps of various sizes and shapes, as well as various plant residues. Theoretical and experimental studies have been performed on this soil clod cleaner to determine the structural and kinematic parameters that provide efficient capturing, motion and sifting down of the soil, through the gaps between the helices of its cleaning spirals. An analytical description of the motion of the clod of soil has been made and a system of differential equations has been compiled, whose numerical solution made it possible to determine the indicated reasonable operative parameters of the developed spiral potato cleaner. The results of the experimental research confirmed those ones obtained through the numerical solution of the mathematical model, i.e., rational angular speed ω of the rotation of the spirals from 20.0 to 30.0 rad s−1 and the radius R of spirals between 0.12 and 0.15 m.
Read full abstract