Solar photovoltaic (PV) technology offers a promising path for addressing energy demand and mitigating climate change. However, climatic conditions relevant to the productivity of solar power may be changed in a warmer future. Here, we quantify the impact of climate change on PV potential over China based on high-resolution climate projections within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). Our results indicate that the annual mean PV power potential (PV POT) over China would decrease by several percent relative to the reference period (1986–2005) under a warmer climate, with the most pronounced decrease over the Tibetan Plateau, which is currently the most solar-rich region in China. However, beyond changes in the mean climate state, we demonstrate a substantial increase in events of extreme low PV power outputs (i.e. those falling below the 10th percentile of the probability distribution of the daily PV POT anomalies). For instance, the frequency of extreme low PV events is projected to reach nearly three times the reference period level over the Tibetan Plateau under the scenario of 3 °C global warming (similar to late-century warming projected based on current mitigation policies). Future changes in PV POT are dominated by changes in surface solar irradiance, while the warming condition further exacerbates the decrease in PV POT. Our results highlight that both the mean and extreme conditions of solar inputs should be considered simultaneously when assessing the impacts of climate change on PV power outputs.
Read full abstract