CoxOy–manganese carbonate (X%)(CoxOy–MnCO3 catalysts (X = 1–7)) were synthesized via a straightforward co-precipitation strategy followed by calcination at 300 °C. Upon calcination at 500 °C, these were transformed to CoxOy–dimanganese trioxide i.e., (X%)CoxOy–Mn2O3. A relative catalytic evaluation was conducted to compare the catalytic efficiency of the two prepared catalysts for aerial oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) using O2 molecule as a clean oxidant without utilizing any additives or alkalis. Amongst the different percentages of doping with CoxOy (0–7% wt./wt.) on MnCO3 support, the (1%)CoxOy–MnCO3 catalyst exhibited the highest catalytic activity. The influence of catalyst loading, calcination temperature, reaction time, and temperature and catalyst dosage was thoroughly assessed to find the optimum conditions of oxidation of benzyl alcohol (BzOH) for getting the highest catalytic efficiency. The (1%)CoxOy–MnCO3 catalyst which calcined at 300 °C displayed the best effectiveness and possessed the largest specific surface area i.e., 108.4 m2/g, which suggested that the calcination process and specific surface area play a vital role in this transformation. A 100% conversion of BzOH along with BzH selectivity >99% was achieved after just 20 min. Notably, the attained specific activity was found to be considerably larger than the previously-reported cobalt-containing catalysts for this transformation. The scope of this oxidation reaction was expanded to various alcohols containing aromatic, aliphatic, allylic, and heterocyclic alcohols without any further oxidation i.e., carboxylic acid formation. The scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET) specific surface area analytical techniques were used to characterize the prepared catalysts. The obtained catalyst could be easily regenerated and reused for six consecutive runs without substantial decline in its efficiency.