A geophysical survey was undertaken at Wiri area of the Andong in southeastern Korea to delineate subsurface structure and to detect the fault zone, which affected the 1997 mountain–hill subsidence and subsequent road heaving initiated by the intense rainfall. Electrical resistivity methods of dipole–dipole array profiling and Schlumberger array sounding and seismic methods of refraction and reflection profiling were used to map a clay zone, which was regarded as the major factor for the landslide. The clay zone was identified in electrical resistivity and seismic sections as having low electrical resistivity (<100 Ωm) and low seismic velocity (<400 m/s), respectively. The clay zone detected by using geophysical methods is well correlated with its distribution from the trench and drill-core data. The results of the electrical and seismic surveys showed that slope subsidence was associated with the sliding of saturated clay along a fault plane trending NNW–SSE and dipping 10°–20° SW. However, the road heaving was caused by the slope movement of the saturated clay along a sub-vertical NNE-trending fault.
Read full abstract