Repeated head impacts (RHI) without concussion may cause long-term sequelae. A growing array of diffusion MRI metrics exist, both empiric and modeled and it is hard to know which are potentially important biomarkers. Common conventional statistical methods fail to consider interactions between metrics and rely on group-level comparisons. This study uses a classification pipeline as a means towards identifying important diffusion metrics associated with subconcussive RHI. 36 collegiate contact sport athletes and 45 non-contact sport controls from FITBIR CARE were included. Regional/whole brain WM statistics were computed from 7 diffusion metrics. Wrapper-based feature selection was applied to 5 classifiers representing a range of learning capacities. Best 2 classifiers were interpreted to identify the most RHI-related diffusion metrics. Mean diffusivity (MD) and mean kurtosis (MK) are found to be the most important metrics for discriminating between athletes with and without RHI exposure history. Regional features outperformed global statistics. Linear approaches outperformed non-linear approaches with good generalizability (test AUC 0.80-0.81). Feature selection and classification identifies diffusion metrics that characterize subconcussive RHI. Linear classifiers yield the best performance and mean diffusion, tissue microstructure complexity, and radial extra-axonal compartment diffusion (MD, MK, De,⊥) are found to be the most influential metrics. This work provides proof of concept that applying such approach to small, multidimensional dataset can be successful given attention to optimizing learning capacity without overfitting and serves an example of methods that lead to better understanding of the myriad of diffusion metrics as they relate to injury and disease.
Read full abstract