Abstract
Quantum computing is a promising technology for machine learning, in terms of computational costs and outcomes. In this work, we intend to provide a framework that facilitates the use of quantum machine learning in the domain of brain-computer interfaces – where biomedical signals, such as brain waves, are processed. To this end, we integrated Qiskit, a well-known quantum library, with pyRiemann, a framework for the analysis of biomedical signals using Riemannian Geometry. In this paper, we describe our approach, the main elements of our implementation and our research directions. A key result is the creation of a standardised pipeline (QuantumClassifierWithDefaultRiemannianPipeline) for the binary classification of brain waves. The git repository reported in this paper also contains a complete test suite and examples to guide practitioners. We believe that this software will enable further research on the joint field of brain-computer interfaces and quantum computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.