Consider the following stochastic differential equation (SDE): Xt=x+∫0tb(s,Xs)ds+∫0tσ(s,Xs)dBs,0≤t≤T,x∈R,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ X_{t}=x+ \\int _{0}^{t}b(s,X_{s})\\,ds+ \\int _{0}^{t}\\sigma (s,X_{s}) \\,dB_{s}, \\quad 0\\leq t\\leq T, x\\in \\mathbb{R}, $$\\end{document} where {B_{s}}_{0leq sleq T} is a 1-dimensional standard Brownian motion on [0,T]. Suppose that qin (1,infty ], pin (1,infty ), b=b_{1}+b_{2}, b_{1}in L^{q}(0,T;L^{p}(mathbb{R})) such that 1/p+2/q<1 and b_{2} is bounded measurable, with sigma in L^{infty }(0,T;{mathcal{C}}_{u}(mathbb{R})) there being a real number delta >0 such that sigma ^{2}geq delta . Then there exists a weak solution to the above equation. Moreover, (i) if sigma in mathcal{C}([0,T];mathcal{C}_{u}(mathbb{R})), all weak solutions have the same probability law on 1-dimensional classical Wiener space on [0,T] and there is a density associated with the above SDE; (ii) if b_{2}=0, pin [2,infty ) and sigma in L^{2}(0,T;{mathcal{C}}_{b}^{1/2}({mathbb{R}})), the pathwise uniqueness holds.