Abstract

We study the fluctuations, as d,n→∞, of the Wishart matrix Wn,d=1dXn,dXn,dT associated to a n×d random matrix Xn,d with non-Gaussian entries. We analyze the limiting behavior in distribution of Wn,d in two situations: when the entries of Xn,d are independent elements of a Wiener chaos of arbitrary order and when the entries are partially correlated and belong to the second Wiener chaos. In the first case, we show that the (suitably normalized) Wishart matrix converges in distribution to a Gaussian matrix while in the correlated case, we obtain its convergence in law to a diagonal non-Gaussian matrix. In both cases, we derive the rate of convergence in the Wasserstein distance via Malliavin calculus and analysis on Wiener space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.