In this paper, the performance of C-band synthetic aperture radar (SAR) Gaofen-3 (GF-3) quad-polarization Stripmap (QPS) data is assessed for classifying late spring and summer sea ice types. The investigation is based on 18 scenes of GF-3 QPS data acquired in the Arctic Ocean in 2017. In this study, floe ice (FI), brash ice (BI) between floes and open water (OW, ice-free area) were classified based on a mini sea ice residual convolutional network, which we call MSI-ResNet. While investigating the optimal patch size for MSI-ResNet, we found that, as the patch size continues to grow, the classification accuracy first increases and then decreases. A patch size of 31 × 31 was found to achieve the best performance. The performance of classification using different polarization combinations from the QPS data was also assessed. The vertical-vertical (VV) polarization input overestimates the FI category while incorrectly identifying most of the BI as FI. The VH polarization produces a synchronous improvement in FI, BI, and OW discrimination, with a higher overall accuracy and kappa coefficient (91.09% and 0.85, respectively) than the VV polarization (83.37% and 0.70, respectively). The combination of VV and vertical-horizontal (VH) polarizations presents a modest precision improvement for BI and OW together with a slight overestimation for FI. With VV, VH, and horizontal-horizontal (HH) polarization data as the inputs, the user’s accuracy improves to 95.12%, 93.42%, and 95.17% for FI, BI, and OW, respectively. The accuracy was assessed against visual interpretation of the sea ice classes in the images using a stratified sampling method. The application of the MSI-ResNet method to data covering the Beaufort Sea and the north of the Severnaya Zemlya archipelago was found to achieve a high overall accuracy (kappa) of 94.62% (±0.92) and 94.23% (±0.90), respectively. This is similar to the classification accuracy obtained in the Fram Strait. From the results of this study, it is shown that the MSI-ResNet method performs better than the classical support vector machine (SVM) classifier for sea ice discrimination. The GF-3 QPS mode data also show more details in discriminating scattered sea ice floes than the coincident Sentinel-1A Extra Wide (EW) swath mode data.